《比我们所能料想的更加奇异:奇怪的科学》
理查德·道金斯是英国皇家科学院院士,牛津大学教授,著名的科普作家、生物学家,同时也是当代最著名的无神论者。著有《自私的基因》,《盲眼钟表匠》等多本科普书籍。
这次在TED网站上因为偶然的机会看到他演讲的视频。一时间,被深刻的哲思和优美的语言所打动,于是决定动手翻译成中文。也顺便趁此机会尝试了下Google新推出的翻译辅助工具Google translator toolkit。下面的这篇译文就是用这个工具辅助翻译出来的。
第一次翻译这样大段的东西,这才深刻体会到翻译是多么难的一件事。既要尊重原文的本意,又要兼顾中文的表达。更希望能把演讲中深刻的思想美以一种一唱三叹的方式表达出来。而这一点恐怕我是没法办到了。
另外,在翻译的过程中发现科学松鼠会已经有了篇现成的译文。但我还是坚持自己把这篇给翻完了。有个别地方借鉴了红猪的译文,在此表示感谢!:D
——————————————————————————–
演讲视频地址:http://www.ted.com/talks/lang/eng/richard_dawkins_on_our_queer_universe.html
《比我们所能料想的更加奇异:奇怪的科学》
翻译:unicell
最后更新:2009-07-01
我演讲的题目是:《比我们所能料想的更加奇异:奇怪的科学》。“比我们所能料想的更加奇异”出自J.B.S. 霍尔丹(J.B.S. Haldane),著名的生物学家。他说道, “我个人隐约觉得,宇宙之奇异不仅超过我们所料想的,更超过我们所能够料想的。我疑心天地之间有着比任何哲学想象到,或是能够想象到的,更多的东西。”理查德·费曼将量子理论的精确性——基于实验的预言能力——与在头发丝的尺度来刻画北美大陆的宽度相媲美。这意味着量子理论在某种意义上一定是正确的。然而基于量子理论的预言所需的前提假设是如此神秘而难于理解,以致于费曼本人也不得不评论道, “如果你认为自己理解了量子理论,那么你就没有理解它。”
物理学家求助于这样或那样自相矛盾的解释,这本身就是件多么奇怪的事啊。大卫·多伊奇(David Deutsch),在题为《真实世界的脉络》的演讲中,采纳了量子理论的“多重世界”解释。因为这个理论你最差也只能说它有些荒谬和浪费。“多重世界”理论认为平行存在着数量巨大且不断增加的宇宙。除非是通过量子力学实验这一狭小的舷窗,否则这些宇宙彼此之间是无法察觉到对方的存在的。这就是理查德·费曼。
译注:量子理论存在经典的“哥本哈根”解释与“多重世界”解释两种。后者最早由休·埃弗雷特(Hugh Everett)于1957年提出。 -unicell
译注:最后一句是说多重世界理论能解释很多事情,尽管付出了引入更多世界的代价。-unicell
而生物学家路易斯·沃派特(Lewis Wolpert)认为, 奇异的现代物理学只是一个具体而特别的例子。相比技术而言,科学常常严重挑战着人们的常识。沃派特指出,每喝一杯水,你就有可能喝下了至少一个曾通过奥利弗·克伦威尔(Oliver Cromwell)膀胱的分子。(众笑)这只是基本的概率论。一杯水中分子的数量比全世界的杯子数量或是膀胱数量都要多的多。——当然了,克伦威尔或是膀胱本身并没有什么特别。你刚刚吸进的一个氮原子,就曾经穿过高大苏铁树左边第三只禽龙的右肺。
“ 比我们所能料想的更加奇异。”究竟是什么使得我们能够料想任何东西?而这又是否能解释我们究竟能料想哪些东西?宇宙间会不会有些事物永远地超越了我们的理解力,但同时又没有超越某些高等智慧生命的理解力呢?宇宙间又是否有事物在原则上超越了一切心智——无论它有多么高等——的理解力呢?科学史是长长一串剧烈的头脑风暴,因为新一代的理论在本质上接受了宇宙中更加奇异的层面。我们现在对于地球是在自转——而不是太阳在天空移动——这一想法是如此的习以为常,以致于我们很难意识到这曾经是多么震撼人心的思想革命。毕竟,一切都是那么显而易见,地球是大而且静止的,太阳则小而会移动。在这里值得一提的是维特根斯坦对于这一问题的评论。“告诉我”,他问道一个朋友, “为什么人们总说,是太阳绕着地球转而不是地球自转,这一想法是非常自然的呢? ”他的朋友回答道: “嗯,很明显啊,因为看起来太阳就好像在绕着地球转呀。”维特根斯坦回答说: “好吧,那要让地球看起来是在自转,看起来应该是什么样? ”(众笑)
科学已经告诉了我们一个和所有的直觉相悖的事实,那就是即便像晶体和岩石这样表面看起来是固体的东西,实际上是几乎完全由虚空(empty space)所组成。一个我们所熟悉的比喻是这样描绘的,一个原子中的原子核就好象飞在体育场中心的一只苍蝇,而相邻的下一个原子,则是相邻的下一个体育场。因此,看起来最坚硬最结实最致密的岩石,实际上几乎完全是空的。这虚空仅被微小粒子所隔断,而这些粒子彼此之间的空隙是如此之大,以致于粒子本身的大小几乎可以忽略不计。那么为什么,岩石无论在外观还是感觉上都是如此坚硬、结实、不可穿透呢?作为一名进化生物学家,我会这么说:我们的大脑经过进化,以使得我们可以在身体所处的这个数量级的尺度和速度下生存下来。我们从来没有进化出在原子世界中漫游的能力。如果有的话,我们的大脑就很可能会把岩石当作是空心的了。我们的手感觉到岩石是坚硬而且不可穿透的,完全是因为岩石和手这两样的物体彼此是不可穿透的。正因为如此,我们的大脑所构建“实心”和“不可穿透”这样的概念才是有用的。 因为这些概念可以帮助我们在中等尺度的世界里为身体导航,而这正是在这个尺度下生存必需的能力。
再来说说尺度的另一端吧,我们的祖先也从不来需要以接近光的速度在宇宙间行进。如果他们曾需要的话,我们的大脑理解起爱因斯坦会来的更加容易。这里,我想称这个我们在其中进化的、中等规模的环境为“中观世界”(Middle World)——这名字和“中土世界”(Middle Earth)无关。是“中观世界”。(众笑)我们是“中观世界”的居民,这一点限制了我们的想象力。你会发现凭直觉就很容易理解,当一只兔子以“中观世界”物体常见的中等速率移动,之后撞上了另一个“中观世界”物体,比如岩石,那么它就把自己撞晕过去了。
译注:“中土世界”源自北欧神话,意指“人类居住的土地”。因英国作家托尔金的《魔戒》系列小说而闻名。 -unicell
译注:中观世界是相对于宏观世界和微观世界而言。 -unicell
请允许我介绍陆军少将Albert Stubblebine三世,他是1983年的军事情报部门的指挥官。他有次盯着自己在弗吉尼亚州阿灵顿办公室的那堵墙,决定采取行动。这行动听起来有些吓人,因为他打算穿墙进到隔壁另一间办公室。他起身从他的办公桌后走了过来。原子主要是由什么组成的?他想着。是空间。他边想边走。我又是什么组成的?原子。他加快了脚步,这时几乎是在小跑。墙壁是由什么组成的?也是原子。我要做的只是把原子和原子之间的空间相合并。紧接着,Stubblebine将军的鼻子就重重地撞在了墙上。Stubblebine,这位手下有16000名士兵的将军,对于自己一次次的穿墙失败而困惑不已。他坚信,穿墙能力终有一天将会成为军中士兵的常规技巧。又有谁还敢和这样一支军队打仗呢?上面这个故事是我前几天在《花花公子》杂志中读到的一篇文章。(众笑)
我有百分之百的理由相信这是一个真实的故事。顺便说一下,我读《花花公子》,是因为上面刊载了我自己的一篇文章。(众笑)伽利略告诉我们,不考虑空气摩擦,重的物体总是和轻的物体在同一时间落地。而在“中观世界”中训练出来的人类直觉却很难相信这一点。这是因为在”中观世界“,空气摩擦总是存在的。如果我们是在真空中进化来的,我们就会认为它们是同时落地的了。而如果我们是细菌,不断地受到分子热运动的冲击,我们的认识又会有所不同,可作为“中观世界”居民的我们体积太大,根本无法注意到布朗运动的存在。同样的道理,我们的生活是由引力所主导的,以致于表面张力几乎完全被忽视了。而对一只小昆虫而言,这两种力的重要性完全是和我们相反的。
图中左边的这位是Steve Grand,右手边的是Douglas Adams。Steve Grand在他的《创生:生命及其制造》(Creation: Life and How to Make It)一书中,针对我们通常对物质一词的偏见出言尖刻。我们倾向于认为只有实心的,有实体的东西才是真正的物体。真空中电磁起伏的波动就显得就不那么真实。维多利亚时代的人认为,这波必然是发生在某种介质中的波动,他们称这种介质为以太。然而,实体的物质概念之所以能宽慰人心,仅仅是因为我们是在“中观世界”中进化并生存的。在这个世界里,“物质”这个词是个有用的虚构概念。漩涡,对Steve Grand来说,就是和岩石同样真实的物体。
在坦桑尼亚的一处沙漠平原,伦盖伊火山(Ol Donyo Lengai)的阴影之下,有一座由火山灰组成的沙丘。这沙丘的美妙之处在于,它可以整体移动。这在地理学上称为新月形沙丘。整个沙丘以每年17米的速度向西,在沙漠中移动。在移动中它始终保持着新月形状并向着号角的方向前进。当风把沙子从较缓的坡面吹向另一侧,之后当沙粒到了沙丘顶端就会滑向月牙的内侧,整个沙丘就这样移动起来了。Steve Grand指出,你、我,我们每一个人,都更像是一个波而不是什么永久性的物体。他恳请我们读者,“去回想一段自己童年的经历。——某个你记得清清楚楚的经历,某个即便你现在回想起来也还像是能看的到、摸的到甚至可以闻的到的经历。毕竟,小时候你曾亲身经历过,不是吗?要不然你又怎么会记得呢?注意,重磅炸弹来了:现在的你并没有亲身经历过那件事。当那段经历发生的时候,组成你现在身体的每一个分子都不在那儿。物质从四面八方流经而过,暂时聚合在一起,形成了你。无论你是什么,你都不是那些组成你身体的东西。如果这还没有使你脖子后的汗毛倒竖,那么再读一遍罢,直到它竖起来。因为这很重要。”
译注:事实上,新月形沙丘在顶端的沙粒滑落后,沙粒会因为气压的原因堆于月牙形的两侧。之后再逐渐被吹到顶端,如此反复。新月形沙丘是逆着风吹来的方向行进的。 -unicell
所以, “真实性”,不是一个我们可以仅凭简单的信心就去使用的词汇。如果一个中微子也有大脑,一个从中微子尺度的祖先进化而来的大脑,它就会说岩石确实是由虚空所组成的了。我们所拥有的大脑,是从中等尺度的祖先那里进化而来的,而我们的祖先是不能穿透岩石的。“真实性”,对于一只动物而言,只是它的大脑为了帮助其生存而产生的必需的概念。不同的物种在不同的世界里生活,从而也就存在着不同版本的真实性了。这一事实让人觉得不安。我们所看到的所谓“真实的”世界,并不是它的本来面貌,而只是一个模型罢了。这个世界的模型经过了感官数据的校准和调节,它被构建出来并在我们和真实世界打交道时发挥用处。
译注:中微子是基本粒子的一种。它很少与其他物质发生作用,能穿透几百亿千米厚的铅而行动几乎不受影响。 -unicell
模型的性质取决于我们是哪一个物种。飞行动物所需要的模型与直立行走、爬行或是水生的动物都不相同。一只猴子的大脑必须有软件可以模拟一个包含了树枝、树干的三维世界。一只鼹鼠用于建模的软件为在地下使用经过了特别定制。一只水黾的大脑则完全不需要三维软件,因为它生活在池塘的表面——一个艾德温·埃博特笔下的二维国。
译注:Edwin Abbott于1884年的小说《Flatland, A Romance of Many Dimensions》。书中描绘了二维国度的生物在多维世界中的经历。 -unicell
我推测,蝙蝠也许可以用它们的耳朵看到颜色。蝙蝠所需的,用来在三维空间导航以捕捉昆虫的世界模型,一定和其他在日间完成类似任务的鸟类,比如燕子,相类似。至于蝙蝠在伸手不见五指的黑暗中使用回声来作为模型的输入变量,而燕子使用光线。这种输入变量上的区别则是偶然的。我甚至怀疑,蝙蝠把感觉到的色调,比如红色和蓝色,作为内在的标签,用来标记回声中某些有用的性质。——例如物体表面的声学纹理,粗糙或是光滑等等。蝙蝠利用色调的方式和燕子,甚至我们人,在利用色调对光的波长长短做标记的方式相类似。红色与长波段的光本身并没有必然的内在联系。
重点就在于,模型的性质是由它将要被使用的方式所决定的,而不是由与其涉及的感官特征所决定。J.B.S. 霍尔丹本人也提到了生活在气味主导的世界中的动物。狗能够区分两种非常相似,并且稀释到很淡的脂肪酸:辛酸和己酸。两种酸的唯一区别,你看,只是其中之一的链上多了一对碳原子。霍尔丹进一步猜测,一只狗很可能可以通过气味将两种酸按分子量大小排列,就好像一个人可以根据发出的音符把钢琴琴弦按长度排列。请看,还有另一种脂肪酸,癸酸,它和之前的两种相当类似,只是又多了两个碳原子。一只从来没有见过癸酸的狗,或许可以毫不费力地想象出它的气味,就像我们可以毫不费力地想像一只比先前听过的高一个音的小号。或许狗和犀牛还有其他嗅觉导向的动物通过颜色来感觉气味。就好像刚才讨论过的蝙蝠的例子一样。
进化使得我们对于“中观世界”尺度、速度的范围产生了直观的舒适感——这有点类似于我们一部分狭窄的电磁频谱看作是可见光。而对可见光之外的频谱,我们却只能借助仪器进行观察。“中观世界”是整个物理实在中的狭窄的一部分,而这正是我们判断“正常”与否的范围。超过这范围的,对我们而言就异常的大,异常的小,或是异常的快。我们可以对小概率事件也给出这样的一个范围;没有什么是完全不可能的。奇迹只是可能性极低的小概率事件而已。一尊大理石雕像有可能会向我们招手;组成它晶体结构的原子可能都向着同一方向来回振动。由于原子的数量巨大,而它们之间又不存在运动方向上的默契,因此我们在“中观世界”看到的大理石,就显得岿然不动了。但雕像手掌中的原子仍然可能恰好在同一时间,以同一方式,一次又一次地移动。这种情况下,手就会挥动,我们就会看见它在“中观世界”向我们招手了。而这件事发生的概率是如此之小,以致于你如果从宇宙起源的时刻开始写0,直到今天你还没有把表示这个概率的0写完。
“中观世界”中进化并没有给予我们应对极小概率事件的能力;我们的生命没有那么长。在广袤的天文学空间和漫长的地质学时间尺度上,“中观世界”里看起来不可能的事件就变成了一种必然。我们可以通过统计行星个数来理解这一点。我们不知道宇宙中有多少颗行星,一个公认的估计值大约在1000亿亿到2000亿亿,或是到10000亿之间。这些数字提供给我们一种手段,用以表述我们对生命这一小概率事件的估计和猜测。如果我们在概率的频谱上加注上某种类似于地标的东西,那么它看起来就和我们之前见到的电磁波频谱差不多。
如果生命在每颗行星上只能发源一次,那么生命就是极为常见的了,再或者生命在每一颗恒星只能发源一次,抑或在每一个银河系只能发源一次,或是在整个宇宙只能发源发源一次(这种情况下,它一定是我们所处的这个宇宙)。而其他的某个地方可能就出现青蛙变王子,或是类似这样魔术一样的事了。如果生命在只在整个宇宙的一颗行星上发源,那么这星球一定是我们的地球,因为我们就是正在这里讨论着这件事。这意味着,如果我们相信是这样的话,生命起源的化学事件,其发生的概率低至1000亿亿分之一。而我隐约觉得生命在宇宙在是相当常见的。当我说“相当常见”的时候,生命可能依然是稀有的,稀有到没有任何一个生命之岛曾遇上另外一个。多么令人悲哀的一件事。
我们怎样解释“比我们所能料想的更加奇异”呢?是从根本原则上就比所能料想的更加奇异?还是仅比我们所能料想到的更加奇异?因为受我们这个在“中观世界”训练、进化的大脑的限制?我们是不是可以通过训练和实践,把自己从“中观世界”中解放出来,从而可以在数学方式之外,用某种直观的方式理解非常大和非常小的事物呢?我真的不知道答案是什么。我很好奇是不是可以从小就让孩子玩模拟量子现象的电脑游戏,比如模拟一个球穿过了屏幕上的两条狭缝,或是通过计算机模拟把量子力学的奇怪现象放大到可以感知的尺度,从而让他们熟悉“中观世界”尺度下的量子流。这样培养出来的后代可以让今后的我们更好地理解量子理论吗?同样的道理,一个模拟相对论的电脑游戏,物体在屏幕上表现出洛伦兹收缩现象等等,这样可以让孩子们更好地理解相对论吗?
最后,我想把“中观世界”这一概念应用到我们对彼此的认识上来。今天的大多数科学家都赞同一种机械论的心智观:即我们是现在这个样子,是因为我们的大脑是现在这个样子,我们的荷尔蒙是现在这个样子。而如果我们在神经解剖学和生理化学上有所不同,那么我们就会和现在有所不同,我们的角色也就会有所不同。但我们科学家是自相矛盾的。如果始终一致的话,我们在面对一个行为不端,比如杀害了儿童的人的时候,我们的反应应该是下面这样:这个装置有一个部件坏了,需要修理。然而我们不会这么说。我们—这其中包括我们最朴素的机械论者,而这个人很可能就是我——我们会说:“你这禽兽不如的东西,坐牢真太便宜你了。”或者更糟糕的是,我们会寻求报复,而这又几乎必然引发新一轮升级的反报复措施。这就是我们今天在世界各地所能看到的景象。总之,当我们像学者一样思考时,我们把人看作复杂而又精细的机器,就好象是电脑或者汽车一样。而当我们恢复到作为人的那一面时,我们表现的就像是Basil Fawlty一样,他在“Gourmet Night”一集中因为汽车不能发动而狠狠地教训了它一顿。(众笑)
译注:Basil Fawlty,英国情景喜剧《Fawlty Towers》中的主角。 -unicell
而我们之所以将汽车和电脑人格化,其原因正和猴子生活在树上世界、鼹鼠生活在地下世界、水黾生活在表面张力主宰的平面世界一样,我们生活在一个社会化的世界。我们在人山人海中穿梭——一个社会化版的“中观世界”。进化使我们成为充满才华和直觉力的心理学家,从而可以更好地预测他人的行为。把人当作机器在科学和哲学意义上或许是准确的,但如果你想猜测这个人下一步会怎么行动,这就是完全是在浪费时间。要想给一个人建立模型,最经济实用的方法就是把他看作一个有目的的、目标导向的个体,他有着快乐和痛苦,也有着欲望、动机和负罪感,有时候则应当被谴责。拟人化并把人们的行为看作是有意图的,这是一个极为成功的对人类进行建模的方法。这套建模软件在我们想到其他一些不适合建模的实体时,有时占据上风。就像Basil Fawlty和他的车,或是上百万妄想狂和他们所幻想的人和宇宙融为一体一样。如此看来,这些就都不足为奇了。(众笑)
如果宇宙比我们所能料想的更加奇异,这是否仅仅因为自然选择让我们,只能去料想那些为了在更新世(Pleistocene of Africa)的非洲生存下来所需要料想的东西呢?抑或是我们的大脑如此地多才多艺,收放自如,以致于我们甚至可以训练自己,打破这个我们身处其中进化的盒子吗?又或是,无论某些生物(beings)多么接近于神,宇宙中都有些事情是如此的奇异,以致于永远地超出了它们哲思的所能梦想到的边缘?非常感谢。
译注:Pleistocene of Africa,非洲更新世,距今180万年至1万年之间,是人类出现的时期。 -unicell
英文原文:
My title: “Queerer than we can suppose: The strangeness of science.” “Queerer than we can suppose” comes from J.B.S. Haldane, the famous biologist, who said, “Now, my own suspicion is that the universe is not only queerer than we suppose, but queerer than we can suppose. I suspect that there are more things in heaven and earth than are dreamed of, or can be dreamed of, in any philosophy.” Richard Feynman compared the accuracy of quantum theories — experimental predictions — to specifying the width of North America to within one hair’s breadth of accuracy. This means that quantum theory has got to be in some sense true. Yet the assumptions that quantum theory needs to make in order to deliver those predictions are so mysterious that even Feynman himself was moved to remark, “If you think you understand quantum theory, you don’t understand quantum theory.”
It’s so queer that physicists resort to one or another paradoxical interpretation of it. David Deutsch, who’s talking here, in The Fabric of Reality, embraces the “many worlds” interpretation of quantum theory, because the worst that you can say about it is that it’s preposterously wasteful. It postulates a vast and rapidly growing number of universes existing in parallel — mutually undetectable except through the narrow porthole of quantum mechanical experiments. And that’s Richard Feynman.
The biologist Lewis Wolpert believes that the queerness of modern physics is just an extreme example. Science, as opposed to technology, does violence to common sense. Every time you drink a glass of water, he points out, the odds are that you will imbibe at least one molecule that passed through the bladder of Oliver Cromwell. (Laughter) It’s just elementary probability theory. The number of molecules per glassful is hugely greater than the number of glassfuls, or bladdersful, in the world — and, of course, there’s nothing special about Cromwell or bladders. You have just breathed in a nitrogen atom that passed through the right lung of the third iguanodon to the left of the tall cycad tree.
“Queerer than we can suppose.” What is it that makes us capable of supposing anything, and does this tell us anything about what we can suppose? Are there things about the universe that will be forever beyond our grasp, but not beyond the grasp of some superior intelligence? Are there things about the universe that are, in principle, ungraspable by any mind, however superior? The history of science has been one long series of violent brainstorms, as successive generations have come to terms with increasing levels of queerness in the universe. We’re now so used to the idea that the Earth spins — rather than the Sun moves across the sky — it’s hard for us to realize what a shattering mental revolution that must have been. After all, it seems obvious that the Earth is large and motionless, the Sun small and mobile. But it’s worth recalling Wittgenstein’s remark on the subject. “Tell me,” he asked a friend, “why do people always say, it was natural for man to assume that the sun went round the earth rather than that the earth was rotating?” His friend replied, “Well, obviously because it just looks as though the Sun is going round the Earth.” Wittgenstein replied, “Well, what would it have looked like if it had looked as though the Earth was rotating?” (Laughter)
Science has taught us, against all intuition, that apparently solid things, like crystals and rocks, are really almost entirely composed of empty space. And the familiar illustration is the nucleus of an atom is a fly in the middle of a sports stadium and the next atom is in the next sports stadium. So it would seem the hardest, solidest, densest rock is really almost entirely empty space, broken only by tiny particles so widely spaced they shouldn’t count. Why, then, do rocks look and feel solid and hard and impenetrable? As an evolutionary biologist I’d say this: our brains have evolved to help us survive within the orders of magnitude of size and speed which our bodies operate at. We never evolved to navigate in the world of atoms. If we had, our brains probably would perceive rocks as full of empty space. Rocks feel hard and impenetrable to our hands precisely because objects like rocks and hands cannot penetrate each other. It’s therefore useful for our brains to construct notions like “solidity” and “impenetrability,” because such notions help us to navigate our bodies through the middle-sized world in which we have to navigate.
Moving to the other end of the scale, our ancestors never had to navigate through the cosmos at speeds close to the speed of light. If they had, our brains would be much better at understanding Einstein. I want to give the name “Middle World” to the medium-scaled environment in which we’ve evolved the ability to take act — nothing to do with Middle Earth. Middle World. (Laughter) We are evolved denizens of Middle World, and that limits what we are capable of imagining. You find it intuitively easy to grasp ideas like, when a rabbit moves at the — sort of medium velocity at which rabbits and other Middle World objects move, and hits another Middle World object, like a rock, it knocks itself out.
May I introduce Major General Albert Stubblebine III, commander of military intelligence in 1983. He stared at his wall in Arlington, Virginia, and decided to do it. As frightening as the prospect was, he was going into the next office. He stood up, and moved out from behind his desk. What is the atom mostly made of? he thought. Space. He started walking. What am I mostly made of? Atoms. He quickened his pace, almost to a jog now. What is the wall mostly made of? Atoms. All I have to do is merge the spaces. Then, General Stubblebine banged his nose hard on the wall of his office. Stubblebine, who commanded 16,000 soldiers, was confounded by his continual failure to walk through the wall. He has no doubt that this ability will, one day, be a common tool in the military arsenal. Who would screw around with an army that could do that? That’s from an article in Playboy, which I was reading the other day. (Laughter)
I have every reason to think it’s true; I was reading Playboy because I, myself, had an article in it. (Laughter) Unaided human intuition schooled in Middle World finds it hard to believe Galileo when he tells us a heavy object and a light object, air friction aside, would hit the ground at the same instant. And that’s because in Middle World, air friction is always there. If we’d evolved in a vacuum we would expect them to hit the ground simultaneously. If we were bacteria, constantly buffeted by thermal movements of molecules, it would be different, but we Middle Worlders are too big to notice Brownian motion. In the same way, our lives are dominated by gravity but are almost oblivious to the force of surface tension. A small insect would reverse these priorities.
Steve Grand — he’s the one on the left, Douglas Adams is on the right — Steve Grand, in his book, Creation: Life and How to Make It, is positively scathing about our preoccupation with matter itself. We have this tendency to think that only solid, material things are really things at all. Waves of electromagnetic fluctuation in a vacuum seem unreal. Victorians thought the waves had to be waves in some material medium — the ether. But we find real matter comforting only because we’ve evolved to survive in Middle World, where matter is a useful fiction. A whirlpool, for Steve Grand, is a thing with just as much reality as a rock.
In a desert plain in Tanzania, in the shadow of the volcano Ol Donyo Lengai, there’s a dune made of volcanic ash. The beautiful thing is that it moves bodily. It’s what’s technically known as a barchan, and the entire dune walks across the desert in a westerly direction at a speed of about 17 meters per year. It retains its crescent shape and moves in the direction of the horns. What happens is that the wind blows the sand up the shallow slope on the other side, and then, as each sand grain hits the top of the ridge, it cascades down on the inside of the crescent, and so the whole horn-shaped dune moves. Steve Grand points out that you and I are, ourselves, more like a wave than a permanent thing. He invites us, the reader, to “think of an experience from your childhood — something you remember clearly, something you can see, feel, maybe even smell, as if you were really there. After all, you really were there at the time, weren’t you? How else would you remember it? But here is the bombshell: You weren’t there. Not a single atom that is in your body today was there when that event took place. Matter flows from place to place and momentarily comes together to be you. Whatever you are, therefore, you are not the stuff of which you are made. If that doesn’t make the hair stand up on the back of your neck, read it again until it does, because it is important.”
So “really” isn’t a word that we should use with simple confidence. If a neutrino had a brain, which it evolved in neutrino-sized ancestors, it would say that rocks really do consist of empty space. We have brains that evolved in medium-sized ancestors which couldn’t walk through rocks. “Really,” for an animal, is whatever its brain needs it to be in order to assist its survival, and because different species live in different worlds, there will be a discomforting variety of reallys. What we see of the real world is not the unvarnished world but a model of the world, regulated and adjusted by sense data, but constructed so it’s useful for dealing with the real world.
The nature of the model depends on the kind of animal we are. A flying animal needs a different kind of model from a walking, climbing or swimming animal. A monkey’s brain must have software capable of simulating a three-dimensional world of branches and trunks. A mole’s software for constructing models of its world will be customized for underground use. A water strider’s brain doesn’t need 3D software at all, since it lives on the surface of the pond in an Edwin Abbott flatland.
I’ve speculated that bats may see color with their ears. The world model that a bat needs in order to navigate through three dimensions catching insects must be pretty similar to the world model that any flying bird, a day-flying bird like a swallow, needs to perform the same kind of tasks. The fact that the bat uses echoes in pitch darkness to input the current variables to its model, while the swallow uses light, is incidental. Bats, I even suggested, use perceived hues, such as red and blue, as labels, internal labels, for some useful aspect of echoes — perhaps the acoustic texture of surfaces, furry or smooth and so on, in the same way as swallows or, indeed, we, use those perceived hues — redness and blueness etcetera — to label long and short wavelengths of light. There’s nothing inherent about red that makes it long wavelength.
And the point is that the nature of the model is governed by how it is to be used, rather than by the sensory modality involved. J. B .S. Haldane himself had something to say about animals whose world is dominated by smell. Dogs can distinguish two very similar fatty acids, extremely diluted: caprylic acid and caproic acid. The only difference, you see, is that one has an extra pair of carbon atoms in the chain. Haldane guesses that a dog would probably be able to place the acids in the order of their molecular weights by their smells, just as a man could place a number of piano wires in the order of their lengths by means of their notes. Now, there’s another fatty acid, capric acid, which is just like the other two, except that it has two more carbon atoms. A dog that had never met capric acid would, perhaps, have no more trouble imagining its smell than we would have trouble imagining a trumpet, say, playing one note higher than we’ve heard a trumpet play before. Perhaps dogs and rhinos and other smell-oriented animals smell in color. And the argument would be exactly the same as for the bats.
Middle World — the range of sizes and speeds which we have evolved to feel intuitively comfortable with — is a bit like the narrow range of the electromagnetic spectrum that we see as light of various colors. We’re blind to all frequencies outside that, unless we use instruments to help us. Middle World is the narrow range of reality which we judge to be normal, as opposed to the queerness of the very small, the very large and the very fast. We could make a similar scale of improbabilities; nothing is totally impossible. Miracles are just events that are extremely improbable. A marble statue could wave its hand at us; the atoms that make up its crystalline structure are all vibrating back and forth anyway. Because there are so many of them, and because there’s no agreement among them in their preferred direction of movement, the marble, as we see it in Middle World, stays rock steady. But the atoms in the hand could all just happen to move the same way at the same time, and again and again. In this case, the hand would move and we’d see it waving at us in Middle World. The odds against it, of course, are so great that if you set out writing zeros at the time of the origin of the universe, you still would not have written enough zeros to this day.
Evolution in Middle World has not equipped us to handle very improbable events; we don’t live long enough. In the vastness of astronomical space and geological time, that which seems impossible in Middle World might turn out to be inevitable. One way to think about that is by counting planets. We don’t know how many planets there are in the universe, but a good estimate is about ten to the 20, or 100 billion billion. And that gives us a nice way to express our estimate of life’s improbability. Could make some sort of landmark points along a spectrum of improbability, which might look like the electromagnetic spectrum we just looked at.
If life has arisen only once on any — if — if life could — I mean, life could originate once per planet, could be extremely common, or it could originate once per star, or once per galaxy or maybe only once in the entire universe, in which case it would have to be here. And somewhere up there would be the chance that a frog would turn into a prince and similar magical things like that. If life has arisen on only one planet in the entire universe, that planet has to be our planet, because here we are talking about it. And that means that if we want to avail ourselves of it, we’re allowed to postulate chemical events in the origin of life which have a probability as low as one in 100 billion billion. I don’t think we shall have to avail ourselves of that, because I suspect that life is quite common in the universe. And when I say quite common, it could still be so rare that no one island of life ever encounters another, which is a sad thought.
How shall we interpret “queerer than we can suppose?” Queerer than in principle can be supposed, or just queerer than we can suppose, given the limitations of our brain’s evolutionary apprenticeship in Middle World? Could we, by training and practice, emancipate ourselves from Middle World and achieve some sort of intuitive, as well as mathematical, understanding of the very small and the very large? I genuinely don’t know the answer. I wonder whether we might help ourselves to understand, say, quantum theory, if we brought up children to play computer games, beginning in early childhood, which had a sort of make believe world of balls going through two slits on a screen, a world in which the strange goings on of quantum mechanics were enlarged by the computer’s make believe, so that they became familiar on the Middle-World scale of the stream. And, similarly, a relativistic computer game in which objects on the screen manifest the Lorenz Contraction, and so on, to try to get ourselves into the way of thinking — get children into the way of thinking about it.
I want to end by applying the idea of Middle World to our perceptions of each other. Most scientists today subscribe to a mechanistic view of the mind: we’re the way we are because our brains are wired up as they are; our hormones are the way they are. We’d be different, our characters would be different, if our neuro-anatomy and our physiological chemistry were different. But we scientists are inconsistent. If we were consistent, our response to a misbehaving person, like a child murderer, should be something like, this unit has a faulty component; it needs repairing. That’s not what we say. What we say — and I include the most austerely mechanistic among us, which is probably me — what we say is, “Vile monster, prison is too good for you.” Or worse, we seek revenge, in all probability thereby triggering the next phase in an escalating cycle of counter-revenge, which we see, of course, all over the world today. In short, when we’re thinking like academics, we regard people as elaborate and complicated machines, like computers or cars, but when we revert to being human we behave more like Basil Fawlty, who, we remember, thrashed his car to teach it a lesson when it wouldn’t start on gourmet night. (Laughter)
The reason we personify things like cars and computers is that just as monkeys live in an arboreal world and moles live in an underground world and water striders live in a surface tension-dominated flatland, we live in a social world. We swim through a sea of people — a social version of Middle World. We are evolved to second-guess the behavior of others by becoming brilliant, intuitive psychologists. Treating people as machines may be scientifically and philosophically accurate, but it’s a cumbersome waste of time if you want to guess what this person is going to do next. The economically useful way to model a person is to treat him as a purposeful, goal-seeking agent with pleasures and pains, desires and intentions, guilt, blame-worthiness. Personification and the imputing of intentional purpose is such a brilliantly successful way to model humans, it’s hardly surprising the same modeling software often seizes control when we’re trying to think about entities for which it’s not appropriate, like Basil Fawlty with his car or like millions of deluded people with the universe as a whole. (Laughter)
If the universe is queerer than we can suppose, is it just because we’ve been naturally selected to suppose only what we needed to suppose in order to survive in the Pleistocene of Africa? Or are our brains so versatile and expandable that we can train ourselves to break out of the box of our evolution? Or, finally, are there some things in the universe so queer that no philosophy of beings, however godlike, could dream them? Thank you very much.
读完了以后感觉浑身汗毛倒竖,从文章里似乎能够体会到一种看待理解周遭世界的新框架。
真是很令人震撼的文章。
另外发现一个拼写错误~:
我们可以对”小概率时间”也给出这样的一个范围;
应为“小概率事件”
改过来啦~ 你看的真仔细! 嘿
译文挺细致的,译注尤为值得称赞。还有就是unicell同学那种因为喜欢而认真动手翻译的精神 🙂
谢谢鼓励~ 🙂
这个想法其实不奇怪, 俺中学时代就考虑过这样的东西.
你中间有一段貌似没有翻译,就是说用量子理论/相对论理论的计算机游戏训练儿童,使他们认为这些是想当然的世界…..这个想法很赞, 我没有想到过! 但是感觉也很恐怖, 如果真得这么做就太邪恶了,变态的科学家阿.
有的。“我很好奇是不是可以从小就让孩子玩模拟量子现象的电脑游戏,比如模拟一个球穿过了屏幕上的两条狭缝,或是通过计算机模拟把量子力学的奇怪现象放大到可以感知的尺度,从而让他们熟悉“中观世界”尺度下的量子流。这样培养出来的后代可以让今后的我们更好地理解量子理论吗?同样的道理,一个模拟相对论的电脑游戏,物体在屏幕上表现出洛伦兹收缩现象等等,这样可以让孩子们更好地理解相对论吗?”
以前不是还有人做过实验,从小孩子带上小孔成像的眼镜。。。一段时间以后,他会觉得摘下眼镜以后世界反而是颠倒的。。 不过演讲里的这个就更夸张点了
天哪,不知道为什么,科普小文章我总是看不明白
哈,你是没耐心吧
我刚才在百度上拼命地找人帮我翻译这个演讲,我终于找到了!很开心。
看来你翻译的很不错,我快速过了一下,我只有一个疑问:
“我个人隐约觉得,宇宙之奇异不仅超过我们所料想的,更超过我们所能够料想的。。。”
这个好像跟英文的意思有点不相同:
“Now, my own suspicion is that the universe is not only queerer than we suppose, but queerer than we can suppose.”
你为什么用“更”这个字? (我是英国人,中文不是特别好,我要是错的话,请原谅)
我会翻译成:
“我个人隐约觉得,宇宙之奇异不仅超过我们所料想的,还比我们所能够料想的要奇异。。。”
你认为呢?
甚有在关公门前耍大刀的感觉,毕竟你是最地道的,我想肯定有不当的地方,有什么意见的话请联系我,谢谢!
汉伦你好,
用“更”是因为觉得原句中not only…, but (also)是有递进关系的。
重读一遍,感觉我原来的翻译还是挺生硬的。”我个人隐约觉得,宇宙之奇异不仅超过我们的料想,它的奇异甚至超过我们所能够料想到的“,这样可能更好一些。
盼指正,毕竟你对原文的理解是最地道的。hoho
这文章真他妈的好,真他妈的好
谢谢译者
楼上有提到用量子方面的游戏,直接让孩子们适应那个世界,主意是很不错,但他们可能在当下的世界很不适应了,毫不夸张的说,肯定会被某些善良的人送到精神病院,做为问题孩子。
最好的方式是,让整个世界现在,大人们都理解这个事情。
我们也许没必要模拟量子等不可思议的世界,来让现在的大脑理解,而是,可以试着让现在的我们变成程序,电子等形式,而不是两个眼睛,有胳膊有脚的现在的“人”,这样我们自然就理解了